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Triprotonated Hydrogen Sulfide: Pentacoordinate Sulfonium Trication SH3*
and the Search for Its Parent Pentacoordinate Oxonium Trication OH3 * **

George A. Olah,* Golam Rasul and G. K. Surya Prakash

Abstract: The pentahydndosulfonium tri-
cation SH2* was found by ab initio MP2/
6-31G** and QCISD(T)/6-311G** levels
of calculation to be a stable minimum
with C, symmetric structure 1. It is
isostructural with the parent pentacoordi-
nate carbonium ion CH . Structure 1 re-
sembles a complex between SH3* and

bond. This structure involving a pentaco-
ordinate sulfur atom is unprecedented.
Rotation of the H, unit around the pseu-
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do-C, axis of SH is facile. The structure
of SF2* was also calculated and com-
pared with that of 1. In addition, our stud-
ies at the ab initio MP2/6-31G** level
showed that the parent pentacoordinate
oxonium trication OH2* is not a mini-
mum on its potential energy surface, and
dissociation into OHZ" and H* occurs

molecular hydrogen forming a 2e-3c¢

Introduction

Experimental evidence for the formation of the parent oxonium
dication H,0%" as an intermediate in superacids was reported
by Olah et al. a decade ago.''! Hydrogen —deuterium exchange
in isotopomeric H;O™ species in superacids was found to occur
with increasing acidity of the medium. This exchange was sug-
gested to proceed by an associative mechanism involving
H,0?* dication.™*] Like the hydronium ion, the sulfonium ion
H,S* was also found to undergo proton-deuterium exchange
in superacids, indicating the formation of H,S?" dications.[?!
Calculations showed that T, symmetrical structures of H,O**
ion'and H,S?* ion!? are the global minima on their potential
energy surfaces. These dications were calculated to have consid-
erable kinetic barriers towards deprotonation.

Using gold(1) organometallic fragment (LAu™*) as an isolobal
substitute for H* (two fragments are considered to be isolobal
if their symmetry properties, approximate energy, shape of fron-
tier orbitals, and number of electrons are similar),’®! Schmid-
baur et al. were even able to prepare dipositively charged tetra-
hedral gold complexes of oxygen,™! [{(0-CH,-C,H,),PAu},-
O]**, and sulfur,® [{(C,H,);PAu},S]**, and determined their
X-ray structures (Scheme 1). Substantial metal —metal bonding
makes them stable and even isolable as crystalline salts. These
gold complexes are isolobal analogues of OH2Z* and SH2%,
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upon optimization.
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Scheme 1. Isolobal complexes of oxygen and sulfur.

respectively. More recently, Laguna et al.l>® prepared and
identified in solution two gold complexes of sulfur, the pentaco-
ordinate, trigonal bipyramidal trication [{(C4Hs);PAu},S]**
and the hexacoordinate, octahedral tetracation [{(CH,)s-
PAu}S|**. These are isolobal analogues of SH2* and SH%",
respectively. However, no single crystal of the penta- and hexa-
coordinate gold complexes derivatives could be grown.[®® Their
structural characterization has significant implications in the
study of superelectrophiles.[®!

In continuation of our study of gitonic onium ions (dipositive
ions with proximate positive charges) we have now extended
our investigations to SH?* and found a minimum for an un-
precedented pentacoordinate sulfonium trication by ab initio
calculations at the correlated MP2/6-31G** and QCISD(T)/
6-311G** levels of theory. We also report our ab initio calcula-
tional search for the parent oxonium trication OH2*.

Calculations

The geometry optimizations and frequency calculations were performed at
the MP2/6-31G** level.l” From calculated frequencies, the optimized struc-
tures were characterized as minima, saddle-points, or transition-state struc-
tures. For the MP2/6-31G**-optimized structures further geometry optimiza-
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tions were carried out at the QCISD(T)/6-311G** level. For improved
energy, single-point energics at the CCSD(T)/cc-pVTZ!®! level were comput-
cd on QCISD(T)/6-311G**-optimized geometries. Calculated energies are
given in Table 1. Atomic charges and Léwdin!® bond order were obtained by
means of a natural bond orbital (NBO) analysis!'®* (Figure 2). Zero-point
vibrational energies (ZPE) were scaled by a factor of 0.93 for MP2/6-31G**//
MP2,6-31G** and 0.95 for QCISD(T)/6-311G**//QCISD(T)/6-311G** cal-
culations. MP2/6-31G** geometrical parameters and CCSD(T)/cc-pVTZ//
QCISD(T)/6-311G**+ ZPE  (QCISD(T)/6-311G**//QCISD(T)/6-311G**)
calculated energies will be discussed throughout, unless stated otherwise.

Results and Discussion

Further protonation of OHZ* would lead to the OH2* trica-
tion. However, we found that the entire potential energy surface
of the OH2™ trication is repulsive at the ab initio MP2/6-31G**
level of calculation. The trication OH2* dissociates into OHZ*
and H* upon optimization.

There are, however, substantial differences between the bond-
ing nature and chemistry of oxygen and sulfur. For example,
unlike oxygen the maximum coordination number of sulfur is
not limited to 4, since d orbitals of sulfur may be utilized in
bonding. At the MP2/6-31G** level the C-symmetric form 1 is
a stable minimum for triprotonated hydrogen sulfide, as con-
firmed by frequency calculations.!'®® No other minima (e.g.
D, C,, etc.) were found on the potential energy surface. Struc-
ture 1 resembles a complex between SH3 * and a hydrogen mol-
ecule forming a two-electron three-center (2e—3¢) bond (Fig-
ure 1). This type of 2e—3c¢ interaction involving sulfur atoms is

SHs3+ 1 (Cp)

SH53* 2 (Cy) TS

Figure 1. MP2/6-31G** structures of 1 and 2 (QCISD(T)/6-311G**—level values
in parentheses).

unprecedented. The structure 1 is isostructural with the C,-sym-
metric structure of the parent pentacoordinate carbonium ion
CH7, which is considered to be the parent of nonclassical carbo-
cations[11 713

The sulfur atom in SH2* does not undergo formal expansion
of the valence octet upon protonation, since no minima of SH3*
other than 1 could be located on its potential energy surface.
Structure 1, therefore, can be viewed
as being formed by insertion of a

Scheme 2. Protonation of SH2"*.

0.2 A longer than 2e—2¢ S—H bonds at the same level of theory.
The H-H distance in the 2e—3c¢ bond is 1.028 A. This is also
0.294 A longer than that found for the hydrogen molecule at the
MP2/6-31G** level of theory, and slightly shorter than that in
H; (1.031 A). The bond lengths given above for the 2e—3c¢
system are also in agreement with the calculated Léwdin bond
order (BO) of S—H (B0 0.52) and H~H (BO 0.29) in this system
(Figure 2a). We also calculated the NBO charges of the ion 1
(Figure 2b). The calculated charge of sulfur atom of the

@ (b)

Figure 2. a) Lowdin bond orders (BO) and b) NBO charges in the ion 1 calculated
at the MP2/6-31G** (QCISD(T)/6-311G**—level values in parentheses) level of
theory.

trication is only +0.35¢. The hydrogen atoms therefore bear
most of the positive charge. The amount of positive charge on
each of the hydrogen atoms in 1 (i.e., both those involved in
2e—3c and 2e-2c interactions) is almost equal.

Calculations were also performed for the C.-symmetrical
structure 2, which can be formed by rotation of the H, unit
around the pseudo-C; axis of SH; in 1 (Figure 1). At the MP2/
6-31G** level the structure 2 is a transition state as it contains
one imaginary frequency (i.e. NIMAG =1) in its calculated IR
spectrum and lies only 0.3 kcalmol ™! higher in energy than
structure 1 (Table 1). At our highest level of theory (CCSD(T)/
cc-pVTZ//QCISD(T)/6-311G**+ ZPE) the energy difference
between 1 and 2 vanished. Thus, the rotation of H, unit around
the pseudo-C; axis of SH; of 1 via transition state 2 is facile.
Calculations on CHZ carbocations have also shown the ro-
tation of the H, unit around the pseudo-C, axis of CH; to
be facile.!'?! Optimizations of the structures 1 and 2 with

Table 1. Total energies (hartree) and relative energies (kcalmol ™ ').

proton into one of the ¢ S—H bonds
of SHZ* to produce a 2e-3¢ bond
between sulfur and the hydrogen

Energies (ZPE) Relative energies

atoms (Scheme 2). MP2/6-31G**//MP2/6-31G**
The S—H bond lengths in the 2¢—

3¢ system are 1.622 and 1.624 A at

final relative energies [c]

QCISD(T)/6-311G**+//QCISD(T)/6-311G**
CCSD(T)/oc-pVTZ//QCISD(T)/6-311G**

1 2 1 2
398.62310 (19.1) [a]  398.62308 (19.1) [a] 0.0 03
39870536 (17.9) [b] 39870535 (17.9) [b] 0.0 00
398.75691 398.75691 00 00
00 00

the MP2/6-31G** level. Thus, as ex-
pected, the relatively electron defi-
ctent 2e—3¢ S—H bonds are about

1040 ——— @
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[a] Zero-point vibrational energies (ZPE) at MP2/6-31G**//MP2/6-31G** scaled by a factor of 0.93. [b] ZPE at
QCISD(T)/6-311G**//QCISD(T);/6-311G** scaled by a factor of 0.95. [c} Final relative energies based on CCSD(T);
cc-pVTZ//QCISD(T)//6-311G** + ZPE (QCISD(T)/6-311G**//QCISD(T)//6-311G**).
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QCISD(T)/6-311G** had little effect on
the geometries; the S-H and H-H bonds
become slightly longer.

Possible intramolecular hydrogen trans-
fer in trication 1 through a C,,-type transi-
tion state (Scheme 3) was also considered.
However, no such transition state could
be located at the MP2/6-31G** or
QCISD(T)/6-311G** levels. In contrast, a C,,-type transition
state for hydrogen scrambling has been calculated for CHJ 112!
Indeed, hydrogen scrambling in this system is extremely
facile.!!?!

Two possible dissociation pathways for trication 1 were con-
sidered (Table 2, Eq. (1) and (2)). As expected, both are highly

SHs**, Cyy
Scheme 3.

Table 2. Possible dissociation pathways for trication 1.

Eq. AH (kcalmol 1) [a]
SH3* (1) » SHI* +H* 1) ~2572
SH3' (1) - SH2* + H} 2 —2256
SH?* (1) - SH3* + H, 3) +124.4

[a] At the CCSD(T)/cc-pVTZ//QCISD(T)/6-311G** + ZPE level of theory.

exothermic; the dissociation into SH2* and H* [Eq. (1)] is more
exothermic by 31.6 kcalmol ™! than the dissociation into SH2 ¥
and HJ [Eq. (2)]. We also found that the gas-phase reaction of
SH3* trication with H, forming SH3™ (1) is highly exothermic
[Eq. (3)]. Interestingly, the SH2* “radical dication has been ob-
served in the gas phase by charge-transfer mass spectrometry
(CTMS).1'*] As our calculations indicate that the SH3* trica-
tion should be stable, it might be possible to observe 1 in the gas
phase by the reaction of SH3* and H,. The calculated D,,
structure of SH3™ is given in Figure 3.

(1.595)
1.554
Figure 3. MP2/6-31G** structure of SH3* (QCISD(T)/
SH3?* (D3p) 6-311G**—level values in parentheses).

We also calculated the structure of SF2* and compared it
with that of 1. Geometry optimization of SF2* at the MP2/6-
31G** level gave a C-symmetrical single-minimum structure
(Figure 4), which resembles a complex formed by end-on coor-
dination of F, with SF37*; the S—F, bond is long (1.824 A).
Unlike SH?* (1), SF2* does not contain a pentacoordinate
central sulfur atom. In both cases, the sulfur atom does not
formally expand its valence octet. SF2* can be described as a

Figure 4. MP2/6-31G** structure of SF27
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halonium ion type structure, that is, in [F,SFFP * the F,S group
acts as a pseudohalogen. In contrast, Cheung et al. calculated
that SF{ has a trigonal bipyramidal structure at the MP2(FU)/
6-31G* level.l'”! Five bonding electron pairs in SF} are dis-
tributed around the sulfur atom in a standard trigonal bipyra-
midal structure involving d orbitals.

Conclusion

The present ab initio molecular orbital study shows that the
parent pentacoordinate sulfonium trication SH2* (1) is a mini-
mum on its potential energy surface, although its deprotonation
is highly exothermic. Our studies at the ab initio MP2/6-31G**
level also show that the parent pentacoordinate oxonium trica-
tion OH2" is not a minimum on its potential energy surface, and
dissociation into OH3* and H* occurs upon optimization. The
structure 1 resembles a complex between SH: " and a hydrogen
molecule held together by a 2e—3¢ bond. This structure involv-
ing a 2e-3c bond with a pentacoordinate sulfur atom is un-
precedented. The system is isostructural with that of the parent
pentacoordinate carbonium ion CH; . The rotation of H, unit
around the pseudo-C; axis of SH; should be facile. We also
calculated the structure of SF2™ and compared it with that of 1.
As our calculations indicate that the SH3™ trication should be
stable, it might be possible to observe 1 in the gas phase by the
reaction of SH3* with H,.
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